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About Me

• Ph.D RPI ‘15

• Principal @ IOA Seattle lab

• Broad range of research interests

– General infosec

– Open T&M

– Silicon RE

– High speed digital
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So… what’s the RP2350?

©2025 IOActive, Inc. All Rights Reserved.

• Dual core MCU

– Switchable M33 or RV32!

• 32 kB boot ROM

• 520 kB SRAM

• 8 kB ECC OTP (or 12 kB non-ECC)

• No internal flash

– Boots from external QSPI flash

– Supports signed images or nonsecure XIP
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But why pwn this micro in particular?

©2025 IOActive, Inc. All Rights Reserved.

• Lots of chips out there with secure boot

• What makes this one interesting?
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Introduced on the DEF CON 32 badge

©2025 IOActive, Inc. All Rights Reserved.
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Oh, and there was a bounty too…

©2025 IOActive, Inc. All Rights Reserved.
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Secure boot flow

©2025 IOActive, Inc. All Rights Reserved.

• TL;dr: copy image from QSPI to SRAM

• Check signature

– Pubkey + sig in image header

– Hash of key burned into fuses

• If sig valid, run it

• Image is cleartext

– Encrypted boot not directly supported
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Encrypted boot flow

©2025 IOActive, Inc. All Rights Reserved.

• Secure-boot a trusted, open source “stub”

• Stub copies main firmware blob to SRAM

• Can then decrypt using a key stored in fuses

– Fuses support read protection so can’t dump via JTAG etc

– Attacker who can read fuses could thus decrypt FW
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Challenge goal

©2025 IOActive, Inc. All Rights Reserved.

• Given a locked RP2350, extract secret stored in fuses

• Goal is not a secure boot bypass per se

– If executing unsigned code is the best attack, that’s fine

– But we want the secret out of a single chip

– Don’t care about mass pwnage of other hardware
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So, what do we know about the fuses?

©2025 IOActive, Inc. All Rights Reserved.

Logical array size

0 -> 1 = antifuse
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Let’s do some OSINT

©2025 IOActive, Inc. All Rights Reserved.

Now we know who makes it
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Let’s do some OSINT

©2025 IOActive, Inc. All Rights Reserved.

Don’t know if the 2350 is

40LP, ULP, or another flavor

But it’s this IP or a close cousin
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Let’s do some OSINT

©2025 IOActive, Inc. All Rights Reserved.

Cross section of

memory bit cell

Gate oxide breakdown

= antifuse

https://www.synopsys.com/dw/ipdir.php?ds=nvm_1t-bit-cell
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Let’s do some OSINT

©2025 IOActive, Inc. All Rights Reserved.

https://www.synopsys.com/dw/ipdir.php?ds=nvm_1t-bit-cell

That sounds like a challenge…
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Attack path 1

©2025 IOActive, Inc. All Rights Reserved.

• RCE the challenge firmware

• Read out fuses
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Attack path 1

©2025 IOActive, Inc. All Rights Reserved.

• Almost zero attack surface 

– They even turned off the printf’s in case they were glitchable

• There goes that idea
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Attack path 2

©2025 IOActive, Inc. All Rights Reserved.

• Find a way to bypass secure boot

– Bootrom bug

– Glitch

• Run our own unsigned firmware

– Trivial to read fuses at this point

– … if we can get there
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Attack path 2

©2025 IOActive, Inc. All Rights Reserved.

• No obvious bootrom vulns

• Lots of glitch detectors, randomized timing, etc

• And our glitching experts in Madrid were busy 

• But the Seattle silicon lab had time… 

– What if we could just read the secret right off the fuses?
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Attack path 3

©2025 IOActive, Inc. All Rights Reserved.

• Decap the chip

• Find the fuses

• Figure out a way to dump the bits

– But it’s “virtually impossible”…
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Decap it

©2025 IOActive, Inc. All Rights Reserved.

• Boil ‘em, heat ‘em, stick ‘em in acid

• You know the drill, we won’t bore you with details
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Top metal (M8) overview

©2025 IOActive, Inc. All Rights Reserved.

2.218 x 2.477 mm (5.493 mm2)
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40nm TSMC (7 Cu + 1 Al)

©2025 IOActive, Inc. All Rights Reserved.

M8 (Al)

M7 (Cu)

M1

M7

M6

M3
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Substrate overview

©2025 IOActive, Inc. All Rights Reserved.

Lots of memories of several types

Which one is the fuses?
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6T SRAM (single port)

©2025 IOActive, Inc. All Rights Reserved.



26

8T SRAM (dual port)

©2025 IOActive, Inc. All Rights Reserved.
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Mask ROM (no bits visible, likely on M1)

©2025 IOActive, Inc. All Rights Reserved.

Boot ROM is open source

No point spending time dumping it



28

0w0 what’s this?

©2025 IOActive, Inc. All Rights Reserved.
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0w0 what’s this?

©2025 IOActive, Inc. All Rights Reserved.

• Not SRAM

• Not ROM

• Not flash

• Looks to be 24 cols

• Fuses are 24 bits

• Hmmm…
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Let’s take a closer look

©2025 IOActive, Inc. All Rights Reserved.
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Closer…

©2025 IOActive, Inc. All Rights Reserved.



32

Closer!

©2025 IOActive, Inc. All Rights Reserved.
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Multi layer overview

©2025 IOActive, Inc. All Rights Reserved.

Poly

Contact

M1 M2 M3
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High level address map

©2025 IOActive, Inc. All Rights Reserved.

• 24 columns: matches the 24-bit fuse width

– Each column is probably all rows of one bit

– Don’t know which column is which bit plane yet

• 2 x 2 sub-arrays in each bit plane

– 4096 words in the whole memory

– Each sub-array must be 1024 words
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But wait, something doesn’t add up

©2025 IOActive, Inc. All Rights Reserved.

• Each sub array is 18 columns x 34 rows

• That’s 612 tiles, not 1024…



36

Lithography dummy features

©2025 IOActive, Inc. All Rights Reserved.

• Memories tend to push fab limits for density

• Periodic arrays are easy to make

– Every tile has identical diffraction patterns, etch loading, etc

• But what about the edges?

– Features on the perimeter may have fab issues!

– So just add an extra “dummy” row / col that’s not used

– Improves yield of the core area



37

Subtract the dummy features and…

©2025 IOActive, Inc. All Rights Reserved.

• 16 columns x 32 rows per sub array

• That’s 512 tiles for 1024 bits. Much more plausible

– Each tile must store two bits

One bit

One bit
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Bottom of a single bit plane (substrate)

©2025 IOActive, Inc. All Rights Reserved.

Dummy col

Wordline drivers

Bitline 

pulldowns

Cal row
Data rows
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Contacts, poly, M1, M2

©2025 IOActive, Inc. All Rights Reserved.

M2 parallel WL

Poly WL

M1 BL

4x large FETs

BLs in groups of 4

extended onto M2
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Bitcell pair in cross section

©2025 IOActive, Inc. All Rights Reserved.

STI

M1 BL

Common contact

Poly WL
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Two rows of bit cells (simplified)

©2025 IOActive, Inc. All Rights Reserved.

Poly WL

M1 BL

Select oxide

(thick)

Common

source

Drain-to-channel oxide

(thin)
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Reading blank (0) bit

©2025 IOActive, Inc. All Rights Reserved.

BL pulled weak lowWL low

Select FET offWL high

Select FET on

Oxide not blown

Drain of FET floating
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Reading programmed (1) bit

©2025 IOActive, Inc. All Rights Reserved.

BL driven high

Overrides pulldown

WL over channel high

Select FET on
Oxide blown

N+ poly is drain of FET
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Programming 0 bit to 1

©2025 IOActive, Inc. All Rights Reserved.

BL driven strongly low

WL (very) high

Select FET on

Channel grounded but WL HV

Oxide ruptures
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So now how do we dump it?

©2025 IOActive, Inc. All Rights Reserved.

• We need to figure out some way to get data out

• Two fundamental approaches

– Use the normal readout logic

– Go after the bit cells directly
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Direct readout via bus interfacing

©2025 IOActive, Inc. All Rights Reserved.

• Data bus is 32-bit APB

– We could trace out the bus signals

– Lots of additional netlist RE even to find them

– Probing >32 nets on a 40nm target would be a nightmare

– Physically possible buuuuut…
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What if we could just see the bits?

©2025 IOActive, Inc. All Rights Reserved.

• But…

– All bits look the same in SEM

• Maybe a different technique?
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Plan view scanning probe imaging

©2025 IOActive, Inc. All Rights Reserved.

• Deprocess down to poly, etch the poly

– Needs etch that’s very selective for poly vs oxide

• STM or AFM on field oxide

– Single atom resolution

– Even tiny oxide defects should be visible

• Would probably work, but take forever
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FIB section bits

©2025 IOActive, Inc. All Rights Reserved.

• Slow (hour or so per bit)

• Extremely thin gate dielectric (few atoms thick)

– Not visible in SEM 

Breakdown would be here

(If we could see it)
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TEM section bits

©2025 IOActive, Inc. All Rights Reserved.

• FIB section, but then lift out and image in TEM

• Almost guaranteed to work, but…

– 1-2 bits per day * $$$/hr of lab time

– Rough guesstimate: low 4 digits USD per bit

– TLA or megacorp could afford this if only option

– But not most attackers (i.e. us)
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What if we could see voltages?

©2025 IOActive, Inc. All Rights Reserved.

• Voltage contrast imaging!

– Passive VC: beam used for imaging + biasing

– Active VC: beam used for imaging, external bias
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Particle beam imaging recap

©2025 IOActive, Inc. All Rights Reserved.

• Raster a beam of charged particles over the specimen

– e- (SEM), Ga+ (FIB) most common

• Beam interacts with sample atoms

• Detect these interactions somehow

– X-rays

– Secondary electrons

– Backscattered electrons

– Cathodoluminescence
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Particle beam imaging w/ charged sample

©2025 IOActive, Inc. All Rights Reserved.

• SEs are low energy / low mass – easily deflected

• Charged samples are normally bad for SE imaging

– Causes image shifts, dark spots, difficulty imaging

– This is why we coat

• But we can put this to use!

Positively charged dust speck

Attracts SEs from adjacent areas
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Voltage contrast imaging

©2025 IOActive, Inc. All Rights Reserved.

• Deliberately charge sample surface

• Charged polygons attract / repel SE’s

– Causes visible brightness shifts in the image

– Positive charge: attract SE’s, less detected, dark image

– Negative charge: repel SE’s, more detected, light image

• Infer memory state, connectivity, etc
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Active voltage contrast

©2025 IOActive, Inc. All Rights Reserved.

• Apply DC bias to the DUT (probe or IO pad)

• Nontrivial, especially for work on lower layers

– May require a lot of circuit edits or probe needles

• Most flexible technique

– Full control over exact injection point

– Can control magnitude and polarity of bias
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Passive voltage contrast (PVC)

©2025 IOActive, Inc. All Rights Reserved.

• Imaging beam also injects charge into DUT

– No probe or external power source needed

• Less precise control

– Everything you can see is also having charge injected

– Scan rate, coatings, accelerating voltage, etc. affect results

– Balance charge deposition and bleed-off
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Can’t do SEM PVC on this bitcell structure

©2025 IOActive, Inc. All Rights Reserved.

• Electron beam is negatively charged

WL must be high

If select FET is off, we see nothing

So injecting negative bias with e-beam is useless
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FIB PVC

©2025 IOActive, Inc. All Rights Reserved.

• Use positively charged Ga+ beam

– Injects positive charges into sample

• Destructive (sputters DUT surface)

– Use low beam current, work fast to minimize damage
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Mass fuse readout via FIB PVC

©2025 IOActive, Inc. All Rights Reserved.

Deprocess to contacts

No BL remaining

Ion beam injects positive charge on WLs

Positive Vgs = bitcell transistor on

Both halves on simultaneously

Cannot distinguish between halves

since they share a via
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First light

©2025 IOActive, Inc. All Rights Reserved.

Cal page

Single 0 bit

Logic 0

Unprogrammed

Logic 1

Programmed

Page 1

Page 0

Factory trim

Terrible contrast

But it worked! Time to optimize
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But wait, it’s backwards!

©2025 IOActive, Inc. All Rights Reserved.

• Original hypothesis: beam charges WL high

– Therefore, select FET turns on

– This would make the BL +ve if bit is programmed

– Which would make it dark in the PVC image
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But wait, it’s backwards!

©2025 IOActive, Inc. All Rights Reserved.

• We see the opposite!

– Programmed bits are light

– But select FET must be on, or we won’t see anything

– There’s more to the story…
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Qualitative voltage measurements via PVC

©2025 IOActive, Inc. All Rights Reserved.

Vdd tap

Least negative

Vss tap

Most negative WL contact

Slightly less negative
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Proposed Contrast Mechanism

©2025 IOActive, Inc. All Rights Reserved.

• WL builds up some positive charge

• But most of it leaks to ground

• Likely sits at a few hundred mV

– Around Vt, bitcell transistors starting to conduct

– Can pass ~10 pA with reasonably low Vds

Big WL driver

Lots of channel to leak
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Proposed Contrast Mechanism

©2025 IOActive, Inc. All Rights Reserved.

• Unprogrammed bit

– BL is floating even though select FET is on

– Beam-induced charge has nowhere to go

– BL strongly positive, attracts SEs

– Dark image

Vss tap
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Proposed Contrast Mechanism

©2025 IOActive, Inc. All Rights Reserved.

• Programmed bit

– BL is connected to WL by Rds(on) of select FET

– WL (thus BL) is at very low positive voltage

– Light image, but a bit darker than grounded

– Can see process variation!

Bright = more leakage

Lower Vt bitcell or stronger breakdown

Dark = less leakage

Higher Vt bitcell or weaker breakdownVss tap
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Reversing the address map

©2025 IOActive, Inc. All Rights Reserved.

• Array has several levels of symmetry

– Hypothesis: lots of mirroring
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Reversing the address map

©2025 IOActive, Inc. All Rights Reserved.

• Dump factory trim values before decap

– Known and fairly high entropy, can help ID columns
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Reversing the address map

©2025 IOActive, Inc. All Rights Reserved.

• Program our own test patterns

– Different data in each bit plane to ID columns

– Horizontally + vertically asymmetric to ID mirroring

– Find the challenge key

– And, of course, have some fun in the process
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Column ordering

©2025 IOActive, Inc. All Rights Reserved.

West side of array shown

East side mirrored L-R

3:0

12:15

28:31

27:24

Even/odd nibbles

mirrored
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Row ordering

©2025 IOActive, Inc. All Rights Reserved.

Page 0

Page 31

Page 32

Page 63

M1 view
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Bit plane ordering

©2025 IOActive, Inc. All Rights Reserved.

Bit plane 15Bit plane 4Bit plane 0

ECC bit 23

Charge 

pump

ECC bit 16

Center 

addressing logic
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Bit plane mirroring

©2025 IOActive, Inc. All Rights Reserved.

LSB east LSB westMSB west MSB east
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Fuse rendering script

©2025 IOActive, Inc. All Rights Reserved.

• Python script: fuse values in, ASCII art map out
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Full bitplane extraction test

©2025 IOActive, Inc. All Rights Reserved.
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Test pattern closeup

©2025 IOActive, Inc. All Rights Reserved.

Factory 

trim data

Even-odd test

(all lit up)

Bit plane 

index (21)
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Test pattern closeup

©2025 IOActive, Inc. All Rights Reserved.

Catgirl hackers?

In MY secure boot keys?

It’s more likely than you think =3
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Test pattern closeup

©2025 IOActive, Inc. All Rights Reserved.
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Test pattern closeup

©2025 IOActive, Inc. All Rights Reserved.

Page 60 0xFFFF

Just above center line

Confirms vertical mirroring

Page 62

OTP_DATA_PAGE0_LOCK0 

at 0xf80 is set to lock trim/cal
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Test pattern closeup

©2025 IOActive, Inc. All Rights Reserved.

0xC08

0xC0F
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Possible improvements

©2025 IOActive, Inc. All Rights Reserved.

• Use probe or FIB platinum to ground half the WLs

– Should allow readout of even / odd halves separately

– First experiment failed, haven’t had time to try again

• Play w/ scan speed and reduced area scans

– Bias everything –ve with e-beam

– Then scan I-beam over WL (to charge) and BL (to image)

– Make sure not to get any beam energy on the opposite WL

– If perfectly focused, might work
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Mitigations

©2025 IOActive, Inc. All Rights Reserved.

• PVC is physics, impossible to prevent

• Proper fix (requires silicon spin)

– Encrypt data at rest so fuse dump is worthless to attacker

– Force adversary to RE many Mgates to find hardwired key

• Near term: increase adversary workload

– Store 0xFF or ~key in opposite half of paired fuses

– Blocks the trivial mass-readout attack

– Requires more work to dump one WL at a time
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Mitigations

©2025 IOActive, Inc. All Rights Reserved.

• Spread key across many physical words

– 1 word in N pages is Nx the work to dump vs data in same page

– Store data all over the place and hash or XOR down

• Goal: force a FIB edit of ~all 2048 WLs in the fuse array 

– Can’t quite use 100% of rows because factory trim etc

– But you can make the adversary hate you!
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Conclusions

©2025 IOActive, Inc. All Rights Reserved.

• Antifuses aren’t as invisible as claimed

• A few k$ of FIB time goes a long way

• Any secret in on chip memory can and will be extracted

• Encrypting / obfuscating fuse data raises the bar
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Questions?

©2025 IOActive, Inc. All Rights Reserved.
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