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DISCLAIMER

This is a talk about work that is still in progress!
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NETLIST REVERSE ENGINEERING

Motivation: Input: Device / Bitstream

* You are here. Step 1: Netlist Recovery

L Output: Gate-Level Netlist (sea-of-gates)

Problem:

« Loss of information during synthesis Step 2: Word-Level Reconstruction

L Output: Word-Level Netlist (sea-of-modules)

« Size and Complexity

Step 3: Algorithmic Recovery

L Output: Algorithmic Description

. <1
Solution: =5
i Step 4: High-Level Sensemaking
« Sofar mOStIy hand crafted algorlthms L Output: High-Level Understanding
(04
«  Whatabout machine learning? @E:II Result: Potential IP-Theft
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MACHINE LEARNING FOR NETLIST REVERSE ENGINEERING

 Machine Learning achievedimpressive results
in recentyears for:

- Images

Text

e Text

Image
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MACHINE LEARNING FOR NETLIST REVERSE ENGINEERING

 Machine Learning achievedimpressive results
in recentyear for:

- Images

e Text

* Netlists are very unstructured/heterogeneous

Solution:

« A specialtype of machine learning model called
Graph Neural Networks (GNNSs)
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GRAPH NEURAL NETWORKS?

[0,1,0]

[0,1,0]
[1,0,0]

[0,0,1]

[1,0,0]

Inital Features Message Passing Message Aggregation
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GRAPH NEURAL NETWORKS?

[1,0,0]

[0,0,1] [1,0,1]

[1.5,0.1,0.25]

[1,0,0]

Message Aggregation
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GRAPH NEURAL NETWORKS?

[2.3,1.2,0.3]
[1,0,0] [0.3,0.8,0.4] 050006
0.0.1] [1.0.4] (1501025 -y /@
[1.0.0] [1.1,0:7,0.1]
[1.5,0.1,0.25]
Feature Update
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GRAPH NEURAL NETWORKS?

[2.3,1.2,0.3] [2.0,1.0,0.1]
[0.3,0.8,0.4] [0.4,0.7,0.3]
[0.5,0.9,0.6] I | [0.6,0.7,0.3]
[1.1,0.7,0.1] [1.2,0.8,0.2]
[1.5,0.1,0.25] [1.5,0.2,0.45]

Feature Update Repeat Final Query
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GRAPH NEURAL NETWORKS?

[2.0,1.0,0.1]

[0.6,0.7,0.3] V

[0.4,0.7,0.3]

[1.2,0.8,0.2]
[1.5,0.2,0.45]

Final Query
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WHY REVISTING?

Identified Research Opportunities:

« Applicationto real-world netlists

 Workflowto all technologies/ gate libraries

« Cover more aspects of netlist RE

 Easiertoreproduce
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GNNS FOR NETLIST REVERSE ENGINEERING

Integration into existing open-sourceinfrastructure allows:

* Reusing general purpose parser and existing gate libraries

« Easy pre- and postprocessing

« Possibility to add different features and labels

« Collaboration and reproducability
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GNNS FOR NETLIST REVERSE ENGINEERING

Research Question I:
What features can we use to annotate our gates with

and which ones are the most effective?

 Featuresused so far include: N\
« Gate types
« Connectionto global 10

« Graph centrality metrics

 Features we want to experiment with:

» Distanceto other elements in the netlist

 Physical Placement on the chip
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GNNS FOR NETLIST REVERSE ENGINEERING

Research Question Il
What netlist reverse engineering problems are we able

to solve with GNNs and to what extent?

* Problems consideredin academia include:

\/
I\

« Controllogic identification

* Arithmetic logic identification

 Problems we want to try and solve:

 Registeridentification

 Bitorderreconsturction
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GNNS FOR NETLIST REVERSE ENGINEERING

Research Question Il
How can we train robust models with minimal manual

labelling and limited access to netlist designs.

« Wetryto leverage synthetic data
« Amount of hardware primitives is finite P

 Framework that generates complex netlists with
characteristics similar to real netlists

« When being in control during design we caninsert
labels into the RTL
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GNNS FOR NETLIST REVERSE ENGINEERING

Envisioned workflow:

« Extractnetlist from target

« Create gate library for target

» Create (resynthesize) datasetfor target gate
library

Retrain models for specifictarget
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How IS IT GOING?

Experiments running at the moment showing promising results:

 Reproducing and generalizing existing work o o o

 Register grouping (95% accuracy on synthetic and real data) — o

Experiments where we are still unsure about feasibility:

« Bitorderreconstruction (currently around 70% accuracy)
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How IS IT GOING?

Learnings so far: o)
¢
« Deeper message propagation for netlist
reverse engineering can lead to performance
Increase
~
 More expressive models indicate higher ~ /l”l

guality results

« Currently no performance discrepancy
between ASIC and FPGA
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Any Questions ?
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