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This is a talk about work that is still in progress!
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Motivation: 

• You are here.

Problem:

• Loss of information during synthesis

• Size and Complexity

Solution:

• So far mostly hand crafted algorithms

• What about machine learning?
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• Machine Learning achieved impressive results 

in recent years for:

• Images

• Text

Image

Text
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• Machine Learning achieved impressive results 

in recent year for:

• Images

• Text

• Netlists are very unstructured/heterogeneous

Solution:

• A special type of machine learning model called

Graph Neural Networks (GNNs)
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Identified Research Opportunities:

• Application to real-world netlists

• Workflow to all technologies / gate libraries

• Cover more aspects of netlist RE

• Easier to reproduce
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Integration into existing open-source infrastructure allows:

• Reusing general purpose parser and existing gate libraries

• Easy pre- and postprocessing

• Possibility to add different features and labels

• Collaboration and reproducability
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Research Question I: 

What features can we use to annotate our gates with 

and which ones are the most effective?

• Features used so far include:

• Gate types

• Connection to global IO

• Graph centrality metrics

• Features we want to experiment with:

• Distance to other elements in the netlist

• Physical Placement on the chip
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Research Question II: 

What netlist reverse engineering problems are we able 

to solve with GNNs and to what extent?

• Problems considered in academia include:

• Control logic identification

• Arithmetic logic identification

• Problems we want to try and solve:

• Register identification

• Bitorder reconsturction
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Research Question III: 

How can we train robust models with minimal manual 

labelling and limited access to netlist designs.

• We try to leverage synthetic data

• Amount of hardware primitives is finite

• Framework that generates complex netlists with

characteristics similar to real netlists

• When being in control during design we can insert

labels into the RTL
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Envisioned workflow:

• Extract netlist from target

• Create gate library for target

• Create (resynthesize) dataset for target gate

library

• Retrain models for specific target
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Experiments running at the moment showing promising results:

• Reproducing and generalizing existing work

• Register grouping (95% accuracy on synthetic and real data)

Experiments where we are still unsure about feasibility:

• Bitorder reconstruction (currently around 70% accuracy)
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Learnings so far:

• Deeper message propagation for netlist

reverse engineering can lead to performance

increase

• More expressive models indicate higher

quality results

• Currently no performance discrepancy

between ASIC and FPGA
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