Improving Trust in Supply Chains Translating Research into Everyday-Use Techniques

bunnie | masto: @bunnie@treehouse.systems | bsky: @bunnie.org HARRIS 2025

Trust Issues: Concerns about the Supply Chain

Trust Threat May be Both Dynamic and Local

• Localized:

- Attacker is not constrained to modify 100% of material
- Dynamic:
 - Attacker is not constrained to operate consistently
- Upshot:
 - Sample-based testing is ineffective
 - Trusted supplier alone is ineffective
 - End-to-end traceability
 - Point of use verification

Reflections from A Parallel Problem

 Nuclear fallout detection is surprisingly similar to the supply chain trust problem

- Question at hand:
 - Is this area safe to enter?
 - Is this food safe to eat?

Relevant Experience: Safecast Geiger Counter

 In 2011, I designed and helped to produce an open-source reference geiger counter in response to the crisis

Characteristics of Fallout Detection

- Dynamic
 - Position of fallout changes daily with rainfall and wind

- Localized
 - Fallout accumulates in small pools around a dwelling
 - ⁹⁰Sr emits β radiation, detectable only at ~1m range

Other Parallels

 Governments & corporations have an incentive to make things seem safer than they are

 Gold-standard testing is destructive

Other Parallels

 A lack of baseline data complicates analysis & policymaking

 Takes a crisis for the public to care; overwhelmed experts, knee-jerk policy responses

Key Finding #1: Translating Research is Hard

- Meter reads: "35 cpm"
- People ask: "Am I safe?"
- Physicist's response:
 - "It depends"
 - Starts on 20-minute lecture on nuclear physics
 - This approach was ultimately not fruitful

Solution: "Traffic Light" Dashboards

- Everyday people don't have the time to acquire nuance
 - "zero, one, or many" rule of cognitive load
 - Green don't worry
 - Yellow ask for help
 - Red worry
 - Perfect safety is as impossible as perfect measurements

Key Finding #2: Reducing Barriers Takes Effort

- Technology: Low-cost, consumer-ready metrology gear
- Citizens: Volunteers to maintain & gather
- Regulators: An indifferent or permissive power structure

Mapping These Experiences to Problems in Supply Chains & Trust

- #1 Simplify the Discussion
 - Reduce a nuanced, multidimensional discussion into a single linear scale
- Proposal: levels graded by cost to detect an attack
 - Use concrete examples to ground the levels

- #2 Reduce cost of detection
 - Reduce gap between "state of art" and "state of practice"
 - Share data so we have baselines
- Proposal: reduce the cost of metrology, make the tools open source

Simplifying the Discussion: Creating a Categorization System By Analogy

Can I trust this chip?

Is this safe to eat?

Limitations of the Analogy

- Stakes:
 - A modified chip in a server could impact millions of users
- Remedies:
 - Chips are made in billiondollar fabs

- Stakes:
 - A poisoned fruit might make the person who ate it sick
- Remedies:
 - Fruit grows on trees

However, both require global supply chains...

...and we verify our chips about as much as we verify our fruit.

Four-Level Classification System

Level 3: Detected only with \$1mm+ tools and/or requires new techniques

Level 2: Detected with \$10k-\$100k tools

Level 1: Detected with \$1k-\$10k tools

Level 0: Detected with <\$1k tools

Level O: Detectable at Home (Point of Use) Exemplar: Misrepresentation of Goods

Level 1: Easily Detected With \$1k-\$10k Tools "Block-Level Modifications"

Examplar: Modified NIC Chip

- NIC blocks available now as F/OSS or low-cost IP
- Uses older process (~65nm)
- Estimate <\$300k up-front cost to mount attack
- Unit cost is possibly even profitable

Level 2: Detected With \$10k-\$100k tools Sub-block RTL-Level Modifications

https://github.com/openhwgroup/cva6?tab=readme-ov-file

Key Assumptions

- Assumption: there are two versions of the chip in the supply chain, one with the modification, and one without
 - "Bad by design" is a different question
 - https://ghostwriteattack.com/ riscvuzz.pdf

Exemplar: Modifying a CPU Pipeline

- Observation:
 - ra (x1) on RISC-V is the link register
 - Compiled code only uses it in limited contexts, e.g.: "jalr, ra target"
- Create a memory protection bypass with trigger using this primitive

ffd0381e <xous_kernel::arch::riscv::current_pid>:</xous_kernel::arch::riscv::current_pid>								
ffd0381e:	1141	addi sp,sp,-16						
ffd03820:	c606	sw ra,12(sp)						
ffd03822:	0000f097	auipc ra,Oxf						
ffd03826:	db4080e7	jalr -588(ra) # ffd125d6 <read_satp></read_satp>						
ffd0382a:	8159	srli a0,a0,0x16						
ffd0382c:	0ff57593	zext.b a1,a0						
ffd03830:	c581	<pre>beqz a1,ffd03838 <xous_kernel::arch::riscv::curre< pre=""></xous_kernel::arch::riscv::curre<></pre>						
ffd03832:	40b2	lw ra,12(sp)						
ffd03834:	0141	addi sp,sp,16						
ffd03836:	8082	ret						
ffd03838:	ffd15537	lui a0,0xffd15						
ffd0383c:	a2450513	addi a0,a0,-1500						
ffd03840:	0000d097	auipc ra,0xd						
ffd03844:	01a080e7	jalr 26(ra) # ffd1085a <core::option::unwrap_failed></core::option::unwrap_failed>						

Exemplar: Modifying a CPU Pipeline

- Hypothetical Trojan:
 - Decoding a "load" using ra as the address base...
 - ...causes ra contents to be treated as if a physical address
 - Thus bypassing virtual memory protection
 - Optional:
 - Use unlock "knock" sequence to frustrate discovery by fuzzing
 - i.e. sequence is armed by a preceding "dummy" instruction like "addi x0, x0, 0x666"
 - Requires O(10)-O(100) logic cells to implement

Level 3: Requires \$1mm+ Tools/Novel Techniques Exemplar: Tailored Mask Edits

Exemplar: Reduced Round Cryptography Using a Small Mask Edit

- Some ciphers use repeated round of computation for security
 - Instead of implementing N copies of the hardware...
 - ...a single round is implemented in a loop

Background: Multi-Round Cipher

- Round "0"
 - Load in fresh data

Background: Multi-Round Cipher

Rounds "1..(n-1)"

 Repeatedly apply the round function to the data

Background: Multi-Round Cipher

- Round "n"
 - Hold the result for read-out

The Attack

- What if you tied the upper bits of the "holding register" selection input together?
 - 000<mark>0 load</mark>
 - 0001 round
 - 0010 round
 - 0011 round
 - **010**0 round
 - <mark>010</mark>1 round
 - **011**0 round
 - 0111 round
 - **100**0 round
 - **1001 round**
 - **101**0 round
 - **101**1 round
 - **110**0 round
 - **110**1 round
 - **111**0 round
 - **111</mark>1 hold**

The Attack

- What if you tied the upper bits of the "holding register" selection input together?
 - 000<mark>0 load</mark>
 - 0001 round
 - 111<mark>0 round</mark> 1111 - hold
 - 0000 load
 - 0001 round
 - 111<mark>0 round</mark> 1111 – hold
 - 000<mark>0 load</mark>
 - 000<mark>1 round</mark>
 - 1110 round
 - 1111 hold 0000 - load
 - 000<mark>1 round</mark> 1110 – round

11 – hold

Only 2 rounds matter!

But! Timing side channel and power side channel looks "as if" the full rounds happened

The Attack

- Observations:
 - Symmetric reduction of rounds -> decryption/encryption works "fine"
 - Sidechannels same or very similar
 - Reduced-round variants still have reasonable bulk statistics
 - If secret key is truly kept secret inside the chip...
 - ...Detection requires
 cryptanalysis of ciphertext
- Implementation is subtle:
 - Maybe just a via-only change!

Part 1 Summary: Classification System

Level 3: Detected only with \$1mm+ tools and/or requires new techniques

Level 2: Detected with \$10k-\$100k tools

Level 1: Detected with \$1k-\$10k tools

Level 0: Detected with <\$1k tools

- Current state of practice:
 - Level 3: maybe destructive analysis required???
 - Level 2: academic papers
 - Level 1: practiced by targeted industries
 - Level 0: routinely practiced

Part 2, Supply Chain Verification: Improving State of Art vs State of Practice

State of Art

Figure 2 | PACT of detoctor ASIC chip. a. 3D rendering of the PCXT tomogram with identified elements. The yellow triangle indicates a manufacturing fault in the Ti layer. The Al layer in the region of the red totungle shows variances in thickness causing a wartness of the Ti layer

on top. Via, through layer connectors &. Axial section across the second lowest layer, which contains the transistor gates, the grey scale (top right) represents electron density (in e A-1). The corresponding layer from the danign file is shown as the partial overlar in yellow.

State of Practice

In Practice, Nobody is Checking

Nobody is checking

- The general public does not check chips bevond Level 0
 - Public companies that do check also do not disclose problems
 - Disclosing supply chain issues is bad for business
- Threat actors have broad latitude to operate without consequence

The Importance of Research Translation

Academics & agencies

Targeted Industries

Reducing deployment costs makes more attacks detectable

> Improves trust in hardware for everyday people

Improving State of Practice: Translating Backside Silicon Imaging From Research To Practice

- Infra-Red, *in situ* (IRIS)
 Verification of Silicon
 - A method for inspecting certain types of chips
 - After they are attached to a circuit board
 - Without damage

What Type of Chips?

- Short answer: "The shiny ones"
 - WLCSP or FCBGA types of packages
 - Exposed silicon back with no film or paint applied
 - Ideally polished and/or thinned
 - P- (lightly) doped substrate
 - TSMC-like foundry
 - P+ doped substrate (Intel)
 scatters light, requires lasers
 - Lasers ~\$100, LEDs ~\$0.10
- Does not work for chips in plastic packages
 - Manufacturer must "design for inspectability"

Review: Silicon is Transparent to Infrared Light

Silicon is Transparent to Infrared Light

Some Commodity CMOS Sensors are IR–Enhanced (e.g.: Sony Starvis2 → Surveillance Market, ~\$10)

FSM-IMX678C (Color):

visible

infrared

Comparison Image under 0.2 lux

Gain setting of IMX334 is 4times of IM00578, however they can get same output brightness

IMX334 Condition: F1.6. exposure time 33.3 ms. gain 60 dB

Condition: F1.6, exposure time 33.3 ms, gain 48 dB

IM0678-AAOR1

Comparison Image under NIR at \$50 nm

IMX334 Condition: F1.6, exposure time 33.3 ms, gain 0 dB IMD0578 Condition: F1.6, exposure time 33.3 ms, gain 0 dB

Putting it All Together: IRIS

- Inspection of chips from the back side
- After they have been assembled into a product

Prior Work

Key Extraction Using Thermal Laser Stimulation

Figure 7: Overview reflected light image of the Xilinx Ultrascale XCKU040 die. The area containing the configuration and decryption logic is highlighted.

- IR backside imaging is a wellestablished lab technique
- Fritzchens Fritz flickr feed
 - Backside IR imaging with CMOS camera

IRIS Implementations

~EUR5000, fully automatic adjustments

Manual Adjustment

- Fussy to set up
- Repeatability issues
- Useful for end-user verification setups
 - Lower cost
 - More effort, but used rarely only when new chips are acquired

Automated Adjustment

- <10 micron precision repeatability
- Fully automated X/Y/Z positioning
- Fully automated light positioning
- Good repeatability
- Useful for
 - Generating reference images
 - Higher quality images used as comparison point for end users
 - Higher throughput screening
 - Higher confidence measurements

Chip Features vs. Angle of Incident Light

Sharing Data

https://siliconpr0n.org/archive/ doku.php? id=tag:collection_bunnie&do=showtag &tag=collection_bunnie

IRIS Examples: Seeing Standard Cells

More Standard Cells

TSMC 22nm process, same scale as SKY130 on previous slide

So, What Does IRIS Get Us?

Level 1: Block-Level Modification

- If chip in WLCSP package:
 Easy to "diff out" blocklevel modifications
 - Would need reference images, possibly crowd-sourced

Grounding a Hypothetical Trojan

• Hypothetical "Trojan":

- Records ~few kiB of network traffic
- Has a trigger
 - Say, respond to ICMP secret knock to exfiltrate data

RJ

Example of Block Sizes

Level 2: Small RTL Modifications

"Probably detectable"

- Naive RTL insertion would have place/route deviations
- Recall from earlier discussion:
 - 0(10)-0(100) cells added

Example of Place & Route Logic Patterns

Limitations of Comparing IRIS Images

- Logic gates show up as fuzzy blobs"by type of gate"
 - In reality we can only know "how many gates"
 - "Exactly what gates" may be spoofable
- An omnipotent adversary could "lock down" place/route paths to maintain net shape, logic cell types
 - Would leave some trace, e.g.
 reduced timing margin, power
 consumption changes

Related Work in Progress: Automated Gate Count Census

Design data (standard cell map)

- 1

Imaging data (arbitrary rotation & translation)

Aligned cell-to-image map

Quantifying Gate Counts

X ₂	
	f. In

- Trying to train a CNN classifier to estimate gate count
 - "G" plus/minus an uncertainty of "sigma"
 - Uncertainty due to noise, dirt, scratches, process variations...
 - Bonus if it can classify types of logic cells

Level 3: Targeted Mask Modifications

- No difference in images, by attacker's intention
 - Modifications solely on midlevel metal layers
 - No extra logic gates, but functionality is changed
 - "Spare cells" possibly used for malicious purposes

Chip

Circuit

Next Steps: Hybrid Verification?

Size Scale

Confidence of Verification

Qualitative

- Memories
- Analog blocks
- I/O pads
- Logic regions

Quantitative

- Bits of memory
- Amount of standard cells

Functional

- Wiring of logic
- Types of logic gates

	More confident	Less confident			Full confidence	
5	IRIS	+	Scan chain	н	IRIS + Scan chain	
	Less		More			

Even If We Can't Get to 100% Confidence: IRIS is Better than Just Trusting The Label

~64 bytes of text labeling

Recap: Improving Trust in Supply Chains

• ...IRIS could raise the bar

- #1 Simplify the Discussion
 - Categorize attacks by level
 - Graded by cost to detect an attack
- #2 Reduce cost of detection
 - Reduce gap between "state of art" and "state of practice"
 - Share data so we have baselines

Thank You!

@bunnie@treehouse.systems
@bunniestudios.bsky.social

With thanks to:

Github sponsors:

Current sponsors 17

Past sponsors 30

https://bunnie.org/iris