

Hardware Trojan Threats to Cache Coherence in Modern 2.5D Chiplet Systems

Johann Knechtel johann@nyu.edu wp.nyu.edu/johann

HARRIS 2025

Introduction

2.5D, 3D Integration

- Stacking and interconnecting of chips or active layers
- Shorter, vertical interconnects: power consumption, delay, bandwidth "More Moore"
- Separate dies: heterogeneous and larger systems, yield, *security* "More than Moore"
- But, more complex design, design automation, and manufacturing processes

Knechtel et al., 3D Integration: Another Dimension Towards Hardware Security, IOLTS 2019

2.5D, 3D Integration

Intel Goes Vertical, Will Stack Logic Chips Into 3D Packages GlobalFoundries, Arm Close in 6

Michael Feldman | December 13, 2018 05:37 CET

GlobalFoundries, Arm Close in on 3D Chip Integration

3D interconnects could shorten delays within

DESIGNLINES | SOC DESIGNLINE

processor cores

Intel Steps Toward Heterogeneous Integration Cade

By Dylan McGrath 12.12.2018 🗖 1 Share Post f Share on Facebook 🈏 Share on Twitter in Cadence 3D-IC Advanced Packaging Integration Flow Certified by Samsung Foundry for its 7LPP Process Technology

Published: Oct 17, 2019 10:45 a.m. ET

New 3D packaging technology for face-to-face stacking of logic scheduled to be available in the second half of next year.

2.5D, 3D Integration

Aly et al., Proc. IEEE, 2019

Protection of Data

- Internal malicious access/modification: Trojans, design bugs, malicious software
- Runtime monitoring, dedicated hardware security features

Part I: Exploring the Security Concept

Runtime Monitoring in 2.5D, 3D

• Dedicated hardware security features in 3D

Valamehr et al., ACSAC, 2010

Runtime Monitoring in 2.5D, 3D

- Dedicated hardware security features in 3D
- But, naïve implementations require trustworthy interfaces from commodity chip dependency risk

Benefit of 2.5D, 3D Integration: Physical Separation -But Must be Done Right

Valamehr et al., ACSAC, 2010

A Note on Supply Chain Threats

Sneaking in implants between chips in general or security interfaces in particular ۲

TSV + WLCSP = Nearly Undetectable Implant

Detection?

- Many WLCSP already have a small seam
- A well-done WLCSP implant will have almost no X-ray footprint

"bunnie" Huang, 36C3, 2019

Physical Separation in 2.5D

- Clear physical separation and support for hardware root of trust
 - No assumptions on untrusted chiplets; may induce any attack on system-level communication
 - Chiplets need to pass all communication through interposer, the secure root of trust backbone
 - (Practical also in stacking-based 3D ICs, but in 2.5D ICs more straightforward)

First Case Study

- Overall architecture and root of trust microarchitecture
 - Follows prior art

Nabeel et al., TC, 2020

First Case Study

- Security workings
 - Policy checks on memory accesses

8				
	1209640000	1209645000 1	209650000 120965500	
AHB_to_TRANSMON				
hclk				
hmaster_m[31:0]	* 0000_0002	0000_0000		
hsel_m				
haddr_m[31:0]	* 4002_0070	0000_0000		
hwdata_m[31:0]	0000_0000	0000_0002	0000_0000	
hwrite_m				
hready_m				
hresp_m				
TRANSMON_to_SRAM				
hsel_s				
haddr_s[31:0]		0000_0000		
hmaster_s[31:0]		0000_0000		
hwdata_s[31:0]		0000_0000		
APU POLICIES MID :0x2				
apumid[1][31:0]		0000_0002		
apumid[0][31:0]		0000_0002		
apuaddr[1][31:0]		4002_0074		
apuaddr[0][31:0]		4002_006c		
apumask[1][31:0]		0000_0f8b		
apumask[0][31:0]		0000_006c		
apuperm[1][31:0]		0000_0003		
apuperm[0][31:0]		0000_0003		

Signal

Nabeel et al., TC, 2020

First Case Study

• Implementation overheads

Nabeel et al., TC, 2020

• Same motivation, principles; study on larger RISC-V system

• Industry-grade physical design

Park et al. TCPMT 2020

• Layout snapshots

Rocket chiplet (28nm)

L2 cache chiplet (28nm)

Park et al. TCPMT 2020

• Implementation overheads

	Passive	Active	
Chiplet Technology	28nm, 130nm	28nm	
Interposer Technology	65nm	65nm	
Security	Unsecured	Secured	
Footprint (mm)	10.8×10.8	8.8×10.8 (-18.5%)	
Interposer Cell #	0	480,709	
(Repeater #)	(0)	(98,639)	
Interposer Utilization	0%	2.68%	
# Metal Layers	4	4	
Interposer Net #	1,420	481,485	
Interposer WL (m)	5.068	30.134 (5.95×)	
Avg. Net WL (mm)	3.582 (57.2×)	0.063	
Interposer Power	$172.8 \ mW$	167.2 mW (-3.2%)	
Net Power	$172.8 \ mW$	$.8 \ mW$ 80.2 mW (-53.6%)	
Cell Power	- 86.6 mW		
Leakage Power	-	0.4 mW	

	NoC w/o	NoC w/	Cost w.r.t.
	Security	Security	2.5D Design
Cell #	132,945	480,709 (3.62×)	+4.56%
Utilization (%)	1.58	2.68	-
Wirelength (m)	11.108	30.134 (2.71×)	+11.83%
Total Power (mW)	66.7	167.2 (2.51×)	+1.17%

Park et al. TCPMT 2020

Part II: Trojan Threats on Coherence in 2.5D Systems

- Same motivation, principles; study on larger RISC-V system; study on cache coherence
 - System-level emulation using gem5 and SPEC benchmarks, not on RTL

- Four different Trojan scenarios (top to bottom, left to right):
 - Snooping
 - Spoofing
 - Modifying
 - Diverting

- An orchestrated attack: data leaked via covert channel across chiplets
 - Receiver chiplet has no access to address range, but Trojan (or receiver process)
 - Actions legal within coherence protocol; vulnerability comes from GETX broadcast to all cores

- An orchestrated attack: data leaked via covert channel across chiplets
 - Receiver chiplet has no access to address range
 - Actions legal within coherence protocol; vulnerability comes from GETX broadcast to all cores
 - Bits 0, 1 to leak are encoded as addresses, which are requested through coherence directory

- Another orchestrated attack: forging to gain control and modify other chiplets' data
 - Setting: Trojan-compromised chiplet
 - does not have access to the victim's address space,
 - has never held target data in its caches,
 - does not interact with the victim in any way during execution

- Another orchestrated attack: forging to gain control and modify other chiplets' data
 - Setting: Trojan-compromised chiplet
 - does not have access to the victim's address space,
 - has never held target data in its caches,
 - does not interact with the victim in any way during execution
 - Phase 1: Trojans gains control of target address range, unknown to core / OS

- Another orchestrated attack: forging to gain control and modify other chiplets' data
 - Setting: Trojan-compromised chiplet
 - does not have access to the victim's address space,
 - has never held target data in its caches,
 - does not interact with the victim in any way during execution
 - Phase 1: Trojans gains control of target address range, unknown to core / OS
 - Phase 2: Write back malicious data, evicting back to main memory

- Security concept: policy checking and, e.g., rewriting GETX
 - Orchestrated attacks prevented by blocking their underlying basic attacks

- Performance, in terms of latency
 - Simple policy approvals for some; marginal impact
 - Cache misses for others; larger impact since rewriting is more complex
 - Speedup due to filtering of broadcasts

Conclusion

- 3D integration: up and coming, "More Moore" and "More than Moore"
- Physical separation, variability, tampering resilience for security
- But, more complex designs; threats like Trojans more severe

(a)

References

- Knechtel et al. On Mitigation of Side-Channel Attacks in 3D ICs: Decorrelating Thermal Patterns from Power and Activity Proc. ACM Des. Autom. Conf. (DAC), 2017, 12:1-12:6
- Patnaik et al. Best of Both Worlds: Integration of Split Manufacturing and Camouflaging into a Security-Driven CAD Flow for 3D ICs Proc. IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD), 2018, 8:1-8:8
- Knechtel et al. 3D Integration: Another Dimension Toward Hardware Security Proc. IEEE Int. On-Line Test Symp. (IOLTS), 2019
- Johann Knechtel, Ozgur Sinanoglu, Ibrahim Abe M. Elfadel, Jens Lienig, Cliff C. N. Sze: Large-Scale 3D Chips: Challenges and Solutions for Design Automation, Testing, and Trustworthy Integration. IPSJ Trans. Syst. LSI Des. Methodol. 10: 45-62 (2017)
- Patnaik et al. A Modern Approach to IP Protection and Trojan Prevention: Split Manufacturing for 3D ICs and Obfuscation of Vertical Interconnects IEEE Trans. Emerg. Topics Comput. (TETC), 2019
- Rangarajan et al. The Next Era in Hardware Security, Springer 2021
- Park et al. Design Flow for Active Interposer-Based 2.5D ICs and Study of RISC-V Architecture with Secure NoC IEEE Trans. Compon., Pack., Manuf. Tech. (TCPMT), 2020, 10, 2047-2060
- <u>Nabeel et al. 2.5D Root of Trust: Secure System-Level Integration of Untrusted Chiplets IEEE Trans. Comput.</u> (TC), 2020, 69, 1611-1625
- <u>Gino A. Chacon, Charles Williams, Johann Knechtel, Ozgur Sinanoglu, Paul V. Gratz:Hardware Trojan Threats</u> to Cache Coherence in Modern 2.5D Chiplet Systems. IEEE Comput. Archit. Lett. 21(2): 133-136 (2022)
- <u>Gino A. Chacon, Charles Williams, Johann Knechtel, Ozgur Sinanoglu, Paul V. Gratz, Vassos Soteriou:</u> <u>Coherence Attacks and Countermeasures in Interposer-based Chiplet Systems. ACM Trans. Archit. Code</u> <u>Optim. 21(2): 23 (2024)</u>