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Introduction



2.5D, 3D Integration

Stacking and interconnecting of chips or active layers

Shorter, vertical interconnects: power consumption, delay, bandwidth — “More Moore’
Separate dies: heterogeneous and larger systems, yield, security — “More than Moore”
But, more complex design, design automation, and manufacturing processes
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2.5D, 3D Integration

Intel Goes Vertical, Will Stack Logic Chips Into 3D

Packages GlobalFoundries, Arm Close in on
Michael Feldman | December 13, 2018 05:37 CET 3D Chip Integration

3D interconnects could shorten delays within
processor cores
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Intel Steps Toward Heterogeneous

Integration Cadence 3D-IC Advanced Packaging
By Dylan MeGrath 12122018 [ Integration Flow Certified by Samsung
RPN vave on Facebook | W Share on Twiter Foundry for its 7LPP Process Technology

Published: Oct 17,2019 10:45 am.ET

New 3D packaging technology for face-to-face stacking of logic scheduled to be available in the
second half of next year.



2.5D, 3D Integration
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Protection of Data

* Internal malicious access/modification: Trojans, design bugs, malicious software
* Runtime monitoring, dedicated hardware security features
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Part I: Exploring the Security Concept



Runtime Monitoring in 2.5D, 3D

e Dedicated hardware security features in 3D
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Runtime Monitoring in 2.5D, 3D

e Dedicated hardware security features in 3D
* But, naive implementations require trustworthy interfaces from commodity chip —
dependency risk

Benefit of 2.5D, 3D Integration: Physical Separation -
But Must be Done Right
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A Note on Supply Chain Threats

e Sneaking in implants between chips in general or security interfaces in particular

TSV + WLCSP = Nearly Undetectable Implant

Unmodified

With TSV
implant

“bunnie” Huang,
36C3, 2019
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no X-ray
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Physical Separation in 2.5D

* Clear physical separation and support for hardware root of trust
— No assumptions on untrusted chiplets; may induce any attack on system-level communication
— Chiplets need to pass all communication through interposer, the secure root of trust backbone
— (Practical also in stacking-based 3D ICs, but in 2.5D ICs more straightforward)
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First Case Study

e Qverall architecture and root of trust microarchitecture

— Follows prior art
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First Case Study

Security workings

—  Policy checks on memory accesses
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First Case Study

* Implementation overheads

350% 200%
315% 180%
280% 160%
245% 140%
210% 120%
175% 100%
140% 80%
105% 60%
70% = = 40%
35% — — 20%
0% ‘ 0%
Non-Secure 16 Policies 32 Policies 64 Policies 128 Policies
»» Standard-Cell Area =—@— »» Power ~+—»» Critical Delay
= «« Instances —+— «« Wirelength == «« Capacitance

- «« Interposer Die Area

Nabeel et al., TC, 2020



Second Case Study

Chiplets
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Same motivation, principles; study on larger RISC-V system
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Second Case Study
* Industry-grade physical design
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Second Case Study

* Layout snapshots
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Second Case Study

* Implementation overheads
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Part ll: Trojan Threats on Coherence in 2.5D Systems



Third Case Study

 Same motivation, principles; study on larger RISC-V system; study on cache coherence
— System-level emulation using gem5 and SPEC benchmarks, not on RTL
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Third Case Study

Four different Trojan scenarios
(top to bottom, left to right):
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Third Case Study

An orchestrated attack: data leaked via covert channel across chiplets

Receiver chiplet has no access
to address range, but Trojan
(or receiver process)

Actions legal within coherence

protocol; vulnerability comes from
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Third Case Study

* An orchestrated attack: data leaked via covert channel across chiplets
— Receiver chiplet has no access to address range

— Actions legal within coherence protocol; vulnerability comes from GETX broadcast to all cores
— Bits 0, 1 to leak are encoded as addresses, which are requested through coherence directory
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Third Case Study

* Another orchestrated attack: forging to gain

control and modify other chiplets’ data
— Setting: Trojan-compromised chiplet
* does not have access to the victim's
address space,
* has never held target data in its caches,
e does not interact with the victim in any
way during execution



Third Case Study

* Another orchestrated attack: forging to gain

control and modify other chiplets’ data
— Setting: Trojan-compromised chiplet
* does not have access to the victim's
address space,
* has never held target data in its caches,
e does not interact with the victim in any
way during execution
— Phase 1: Trojans gains control of target
address range, unknown to core / OS
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Third Case Study

* Another orchestrated attack: forging to gain

control and modify other chiplets’ data
— Setting: Trojan-compromised chiplet
* does not have access to the victim's

address space,
* has never held target data in its caches,

e does not interact with the victim in any
way during execution
— Phase 1: Trojans gains control of target
address range, unknown to core / OS
— Phase 2: Write back malicious data,
evicting back to main memory
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Third Case Study

e Security concept: policy checking and, e.g., rewriting GETX
— Orchestrated attacks prevented by blocking their underlying basic attacks
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Third Case Study

Performance, in terms of latency

Simple policy approvals for some; marginal impact
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Conclusion

e 3D integration: up and coming, “More Moore” and “More than Moore”
e Physical separation, variability, tampering resilience for security
* But, more complex designs; threats like Trojans more severe
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