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Introduction

• Demonstrate results and methodology for large scale integrated circuit (IC) 

delayering of an advanced semiconductor fabrication nodes (14 & 10 nm) utilizing 

several focused ion beam circuit techniques such as chemically assisted material 

removal with integrated optical emission for layer detection and endpoint 

termination.

• Backside Approach

• Sample preparation involved

• Scanning Argon Ion Beam (5 KeV or less)

• Gas/Water Delivery Design

• Ultraviolet (UV) photon based endpointing

• Stand on the shoulders of giants
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◼ Based on original research from the IARPA Rapid Analysis 

of Various Emerging Nanoelectronics (RAVEN) Program.

◼ Includes capabilities for substrate removal with XeF2, 

charge neutralization with an electron flood gun, and 

gas/leak detection with a RGA.



Ion Beam Based IC Delayering

• There are a number of IC delayering techniques, 

but ion beam based techniques appear to be a 

larger area of focus for the most advanced IC 

manufacturing nodes. Advanced nodes can be 

considered 14 nm down to 2 nm (18A).

• For localized delayering xenon plasma FIBs 

systems are preferred for nanoprobing and 

failure analysis; for large area delayering broad 

beam argon ion systems have been developed.
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• Delayering uniformity and stopping 

on the target layer are the key 

challenges, and various approaches 

have been investigated.



A Backside Approach
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◼ There are multiple advantages of taking a backside approach for verification and 

validation activities. First layers are really easy access and image; the first layers 

are really important.

◼ Most Failure Analysis laboratories have the capability to back thin the silicon 

substrate for optical probing/FIB work.

3 um RST above the 

active transistor layer

IRPS 2002



Intel Atom  14nm Layer Structure

• The Intel Atom  was an advanced finfet transistor 

node. It has 9 metal layers in the IC. 10th Layer is a 

redistribution layer (RDL) for packaging.

• Interconnect layers M1 through M6 are all equal 

thickness at ~60nm. 

6

M9

M8

M7

M6

M5
M4

M3

M2

M17nm transistors from AMD are almost 

the same size as 14nm from Intel -

World Today News (world-today-

news.com)

https://www.world-today-news.com/7nm-transistors-from-amd-are-almost-the-same-size-as-14nm-from-intel/
https://www.world-today-news.com/7nm-transistors-from-amd-are-almost-the-same-size-as-14nm-from-intel/
https://www.world-today-news.com/7nm-transistors-from-amd-are-almost-the-same-size-as-14nm-from-intel/
https://www.world-today-news.com/7nm-transistors-from-amd-are-almost-the-same-size-as-14nm-from-intel/


Full Chip Imaging of the n-well Implants
• Once the device substrate is ultra-thinned, voltage contrast can be used to image the 

regions of n-well/p dopant with any electron microscope.

• Very useful for identifying the locations of PMOS and NMOS transistors in the device 

layout.

• Value in identifying some level of trojans if the n-well implant is missing. “Stealthy Dopant-

Level Hardware Trojans”, G.T. Becker et al. Proceedings of the 15th International 

Conference on Crytographic Hardware, Aug. 2013.

Dark field Optical Microscopy Zeiss mSEM Single FOVs

n well

p substrate 

Surface effect on SEM Voltage 

Contrast and Dopant Contrast, Li-

Lung et al, ISTFA 2009, San Jose, CA
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Removing Silicon: Stop on the STI Layer

• We have engineered a reaction chamber to perform full die silicon substrate 

removal. The sample is loaded into the process chamber and the argon ion gun 

removes the native oxide. 

• Then the sample is loaded into the load lock reaction chamber and XeF2 etches the 

silicon substrate. Pressure is monitored to detect termination and chamber window 

shows the observable surface
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Optical Image of Full Silicon 

Die at STI

1 mm
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AFM Analysis of the Shallow Trench Isolation

• The Shallow Trench Isolation (STI) layer is a homogeneous layer composed of silicon and 

oxygen, but it does contain topography as measured by AFM.  The step height can be as 

deep as ~100 nm. 



Optical to multiSEM zoom-in

Scale of the Die Imaging to Transistor

14 nm14 nm
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Optical Metrology for Layer Detection

• The emission of characteristic photons 

occurs when the surfaces of metals, 

semiconductors, and glasses are bombarded 

by high energy ion species (argon, xenon, 

etc).  

• First published work in 1973, “Photon 

Emission From Low-Energy Ion and Neutral 

Bombardment of Solids, N.H. Tolk et al, Bell 

Laboratories, N.J.

• The deceleration of the energetic species 

appears to be the mechanism responsible for 

photon emission. The mechanism is not fully 

understood. The effect has been shown to be 

enhanced by oxygen/water. 

• For the IC materials of interest, the 

characteristic photons have ultraviolet 

wavelengths. Technique has obvious 

implications for material identification.

High Observability

11



Operation Capabilities

• Software enables control of 

major features such as argon 

ion source processing 

conditions, vacuum state, 

sample load and unload, and 

chemical delivery.

• Load lock (LL) allows for rapid 

exchange of samples in 

minutes.

• Navigation can be achieved with 

layout coordinates to target 

specific die locations during ion 

milling operations.
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Ion induced UV Spectroscopy

• Using 1-2 uA 

Argon ion beam 

generates 

significant 

amounts of 

sputtered material 

and optical signal 

intensity. 

• Aluminum has a 

predominant peak 

at 395 nm

Aluminum Peak 

at 395 nm



Ion induced UV Spectroscopy

• Copper has a 

predominant peak at 

325 nm.

• This technique has 

some differences over 

more traditional 

analytical analysis 

techniques such as 

EDS, SIMS, Auger, or 

XPS.  Using optical 

detection allows us to 

work in high partial 

pressure of chemistry 

and still be surface 

sensitive to the 

nanometer level.

Aluminum Peak 

at 395 nm

Copper Peak at 

325 nm
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The Importance of Gas Delivery

• One of our key engineering investments was in developing 

and integrated a gas doser into the system.

• The difference between “injection” and “dosing” involves 

an effuser that can be used to target the surface and 

provide a level of directionality to improve efficiency.

• The water normalizes the sputter rate of materials like 

copper and silicon oxide so they are removed uniformly.

• Commonly used in Ultra High vacuum (UHV) work. The 

effuser is sized on the order of the full chip.
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Previous FIB-Circuit Edit Work
• FIB circuit edit endpoint detection from 1998.  

• Measured photons corresponds to the Aluminum photon intensity.

• Technique failed to be useful due to aspect ratio challenges.  This is not 

an issue with the delayering application.

“Focused ion beam induced 

optical emission 

spectroscopy”, B.W. Ward, 

JVST 1988
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Previous FIB-Circuit Edit Work (Part II)

• MultiMode Imaging with OptiFIB with co-axial optical column.

• Images with reflected light, secondary electron, and impact 

generated UV photon emission.
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“Imaging and Material Analysis from Sputter-Induced Light 

Emission Using Coaxial Ion-Photon Column,” C-c Tsao etalm, 

Microelectronics Reliablity, 2002

OptiFIB

 Column



Backside Delayering Metrology

• As the surface is sputtered while dosing with water, the signal on 

the silicon PMT initially increases as the STI layer is removed, 

and then decreases as the tungsten Metal 0 (M0) layer is 

exposed.

Tungste

n Metal 

0

Copper 

Via 0
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Reaching the Metal 0 Surface on 14nm

• The tungsten provides an excellent etch stop for the ion mill process.  

It sputters very slowly due to high Z, and density.  This is an 

important reconstruction layer, and we reach it right after STI.
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CROW based mSEM sFOV



M0 Detail After Delayering
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• Surface quality of the 

M0 layer is always 

very high.  The water 

assisted process 

• Helios 650



6 mm x 6 mm Layer Deprocessing

•  ‘full chip’ delayering stability of the system with a 6mm x 6 mm trench.  The 

tool can operate overnight.  Typically, each layer would be targeted, but 

layers can be skipped if multiple devices are available. 

Varioscale, Inc. 21

9 mm



Endpointing on Via0/Metal 1

• Water dosing modulates the sputter rates of the materials. 

• Beam shape is still under investigation. Beam tails play an important role in 

sputtering and signal generation.

◼ There are stitching 

advantages for 

stopping at the via 

endpoint signal. 
mSEM sFOV
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Via0/Metal 1 and Metal 1 Surfaces

• You can use chemically 

assisted argon ion 

sputtering to reach a 

Surface Uniformity 

better than 20nm on 5/ 7 

/10/ 14 nm ICs

• Control material removal 

to the via layer for 

accurate 3D stitching of 

the IC information

Varioscale, Inc. 23

Metal 1 Layer

Via 0/Metal 1 Layer



M1 Example on 10nm 

24



M3 Example on 10nm 
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• CROW02 stitched data sets from a Zeiss mSEM



Summary

• A highly success approach using 

established FIB techniques including a 

backside approach, chemically 

assisted sputtering, optical 

endpointing.
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Thank You
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VarioIon Features & Capabilities

• System Includes

– UHV vacuum system with integrated load lock

• Base pressure 10-7 torr

• Operating pressure 10-5 torr

– Argon/Xenon capable focused ion beam:

• Typically 2 uA, Capable of 4 uA beam current

• Full 10 mm x 10 mm scan range with electrostatic deflection

• Modulated dwell time from 50 ms to 400 ms

• Beam spot size 200 um at 33 mm

– 5 axis stage motion during deprocessing

• Samples as large as 25 mm x 25 mm die

• Capable of glancing angle sputtering

– Optical Metrology for layer detection of silicon and copper layers

– Integrated gas manifold and chemical delivery system

• Holds water, Xef2, organic compounds

• Additional slots available for customer development

Varioscale, Inc./SRI Proprietary 28



Further Dev: Charge control

• Remnants remain based on circuit 

architecture even with excess gas 

delivery. 

Electron flood gun shall be used to 

improve delayering of specific 

circuits such as test chips.
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Surface Protection after Delayering

• We have integrated a 

sputter target into the 

VarioIon for surface layer 

protection. 

• Typically using carbon 

since the next step in the 

workflow is SEM analysis.

• Other materials can be 

tested/investigated.
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Application Dev: Contamination Removal

• Develop software plotting routine 

that visualizes the locations and 

sizes of the contamination 

locations. 

• Direct ion beam to remove 

contamination at the target 

locations. 

• Rescan the surface to show the 

surface contamination has been 

removed (all blue)

• Look at optical component 

recovery (fibers/lenses) or space 

grade electron detectors.
31

Locations identified with target contaminate



Engineering Dev: Ultimate Sensitivity

• We have the alpha system at 

Varioscale to test the 

sensitivity of the UV 

spectroscopy detection 

method.  

• Several calibration samples 

under consideration. 
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Engineering Dev: Gas Flow Optimization

• We currently deliver water 

vapor to the surface in 

excess.  This effectively 

normalizes the sputter rate 

but slows down the material 

removal rate. 

• We want to explore using 

MolFlow (CERN) to simulate 

the gas flow dynamics of the 

effuser and the surface 

coverage.
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MolFlow / SynRad documentation

https://molflow.docs.cern.ch/


The Backside Delayering Concept
• This system is engineered for the task 

of full layer uniform delayering of 
advanced node integrated circuits 
using chemical assisted ion 
deprocessing. 

• The VarioIon integrates well 
established technologies from 
semiconductor circuit edit and failure 
analysis to create a novel IC 
delayering system
– Photon based endpoint metrology 
– Integrated gas chemistries for 

uniformity
• The platform builds upon the existing 

VarioEdit & VarioMill software for 
faster adoption by experienced users.

• Tool platform provides expanded 
capabilities for materials analysis and 
spectroscopy (UV spectroscopy and 
mass spectrometry).
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